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Computer simulation of the spinodal decomposition for a polydisperse polymer mixture
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A computer simulation of the dynamical evolution of the domain structure via spinodal decomposi-
tion was performed for a binary polymer blend in which one component has a bimodal molecular-weight
distribution. The results indicated that the dynamical scaling law is valid for this polydisperse system.

PACS number(s): 64.60.Cn, 64.70.Ja, 83.80.Es, 47.11.+j

Recently many efficient methods [1-5] for simulating
the time evolution of phase-separating domain structure
via spinodal decomposition (SD) for binary mixtures have
been reported. Chakrabarti et al. [5] proposed a method
to simulate SD for binary symmetric polymer mixtures
by using the Flory—Huggins—de Gennes (FHD) free-
energy functional. They reported the universality in the
dynamical behavior of polymer mixtures, such as the va-
lidity of the scaling postulate [6] and the dynamical scal-
ing law [7,8] in the late stage SD, for the case in which
the constituent polymers are monodisperse in molecular
weight. However, actual polymers are polydisperse, and
this property affects both static and dynamical behavior.
The sensitive dependence of phase diagrams on poly-
dispersity is a case in point [9]. For the early stage SD,
Schichtel and Binder [10] reported a polydispersity effect.
However, neither theory nor computer simulation works
has as yet been published concerning polydispersity
effects on the late stage SD. The aim of this Rapid Com-
munication is to present our computer solution to this
problem, which was obtained by extending the method of
Chakrabarti et al.

As a model of a polydisperse polymer mixture, we con-
sider the system A-B1-B2, in which 4 and Bn (n =1 or
2) denote different polymer species, and B1 and B2 are
the same polymer species having different molecular
weights or polymerization indices. First, we derive the
basic equations to simulate SD of the system, neglecting
the thermal noise [11] and the hydrodynamic interactions
[12]. Although the effects of the thermal noise and the
hydrodynamic interactions are neglected, it does not
mean at all that they are insignificant. These effects,
especially those of the hydrodynamic interactions, on the
spinodal decomposition for the polydisperse polymer
mixtures should be fully explored in the future. If the
volume fractions of 4, B1, and B2 at a point r and a time
t are defined by ¢ ,(r,7), ¢dp(r,t), and ¢p,(r,?), respec-
tively, it follows from the incompressibility condition
that

b (0,0 F g (1, 0) g (r,)=1 . (1)

The continuity equations for 4, B1, and B2 are given by
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where J, (k= A4, B1, and B2) is the flux of k. Onsager’s
theory gives the following relations between the flux and
the chemical potential:

J4=—AaaV(p s —ppa) = A 45 Vg —1p)) 5)

and

Jp1=—Ap1 4V 4 —pp2) —Ap1p: V(g —ppy) , (6)

where A;; (i,j = A4, B1, or B2) and p; (k =4, B1, or B2)
are the Onsager coefficient and the chemical potential of
k, respectively, and defined below. We note that the On-
sager symmetric relations and the absence of bulk flow
are used to derive Egs. (5) and (6). Substituting Egs. (5)
and (6) into Egs. (2) and (3), respectively, we obtain
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Next, we consider the chemical potentials and the On-
sager coefficients in Egs. (7) and (8). According to the
FHD theory, the free-energy functional F{¢ 4,dp1,¢p,}
for A-B1-B2 is given by

F{¢A’¢B1’¢BZ}/kBT
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where kjy is the Boltzmann constant, T the absolute tem-
perature, ¥ the Flory-Huggins interaction parameter for
the pair of 4 and B, and N, and a, the polymerization
index and the statistical segment length of species k, re-
spectively. The standard definition of u; gives

SF
=F+ > ng(skj_
J

j=A4,B1,B2

where §,; is the Kronecker delta.

The Onsager coefficients for 4-B1-B2 have been for-
mulated by Akcasu and Tombakoglu [13] using the
random-phase approximation to give
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where A is the bare mobility of k given by
Ao=DyNi oy (14)

and D, is the self-diffusion coefficient of k. If D, is given
by the reputation theory [14], A, is represented by

Awo=DyN; 'Ny ¢y (15)

where D;, and N, are the monomeric diffusion
coefficient of k and the polymerization index between en-
tanglements of the k chains, respectively.

wll«i :A;(%+(ABIO+AB2O)_1 > (1 In order to reduce the computation time, we replaced
1/¢; in Eq. (9) and ¢, in Eq. (14) or Eq. (15) by 1/{4, )
Apip1=Apiot(A 4ot Agyp) ", (12)  and (¢, ), respectively, where {¢, ) is the space average
¢, at t =0. Owing to this approximation, Egs. (7) and (8)
and are simplified to
J
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FIG. 1. Patterns for ¢ 4(r) at =4000, 20 000, and 40 000 sec,
grown from a random mixed state. The regions ¢ ,(r)> (¢ )
and ¢ ,(r) < (¢, ) are filled and unfilled, respectively.

t=20000

FIG. 2. Patterns for ¢z,(r) at +=4000, 20 000, and 40 000 sec,
grown from a random mixed state. The regions ¢z (r)> (¢p;)
and ¢,(r) < (dp,) are filled and unfilled, respectively.
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. . ‘
We have numerically integrated Eqgs. (16) and (17) on a nm?/sec, and y=0.0025. Furthermore, we chose

128X 128 lattice with a time step 0.4 sec, using the
periodic boundary conditions. The parameters chosen
are N ,=1000, Ny =500, Ny,=1500, a , =ag;=az,=0.7
nm, D , =2000 nm?/sec, Dy, =8000 nm?/sec, Dp,=888.8

D kN, ' to be 2X107% nm?/sec. With these parameters
the weight-average polymerization index N,, the
number-average polymerization index N,, and N,/N,
for B are 1000, 750, and 1.25, respectively. The initial

values of ¢, were given according to the Gaussian ran-
dom numbers with (¢ ,)=0.47, {$p,;)=0.265, and
(¢p,)=0.265. This initial condition makes the areas of
A-rich and B-rich regions equal. We have run ten times
up to 40000 sec and ten runs are averaged. To see the
growth of the domains and the self-similarity in the
domain growth, we calculate the circularly averaged
structure factor I(g,t) as a function of time where q is the
wave number.

Figures 1-3 show how ¢ ,(r,t), ¢p,(r,2), and ¢p,(r,?)
change with time, and reveal the appearance of bicon-
tinuous patterns. The filled regions in both Figs. 2 and 3
can be superimposed on each other, indicating that the
spatial distributions of ¢p,(r,#) and ¢z,(r,?) are identical.
This is reasonable because we have not chosen the
quench condition for the three-phase separation. The dy-
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FIG. 3. Patterns for ¢z,(r) at t=4000, 20 000, and 40 000 sec, X

FIG. 4. Scaled structure factor S(x,t) plotted as a function
of the reduced wave number x.

grown from a random mixed state. The regions ¢z,(r)> (g,)
and ¢p,(r) < (¢, ) are filled and unfilled, respectively.
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namics of the phase separation in three phases is a very
interesting problem, and will be discussed elsewhere [15].

In order to see whether the dynamical scaling law is
valid or not, the scaled structure factor S(x,¢) calculated
from

S(x,t)=q,;(t)*I (x,1) @21
is plotted against the reduced wave number

x =q/q,(t) (22)
in Fig. 4. Here g,(t) is defined by
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We observe that the plots in the range r =12 000—40 000
sec are well superimposed, indicating that the dynamical
scaling law is valid for the polydisperse polymer blend
studied here.

The authors are grateful to Dr. T. Kawakatsu and Dr.
T. Koga for valuable discussions.
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